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Brain Inspired Computing at Sandia 

• Sandia established a multidisciplinary LDRD project in 

neuromorphic computing project in October 2015 

– Hardware Acceleration of Adaptive Neural Algorithms 

(HAANA) 

– Algorithms research 

– Hardware and Device Architectures 

– Resistive Memory Devices 

• Some of the initial work on learning architecture and 

resistive devices covered in this talk 



Neural-inspired Computing Hardware 

Arvin Calspan Advanced Technology Center; Hecht-Nielsen, R. Neurocomputing (Reading, 
Mass.: Addison-Wesley, 1990); Cornell Library; 

Mark I Perceptron (Rosenblatt 1960): 

EU HBP, SpiNNaker (2014): 

DARPA , IBM TrueNorth (2014): 



Current State of the Art in  

Neural Algorithm Computing 

• CPU/GPU 

– Most general; common programming languages 

– Lowest power efficiency and performance  

– Memory separate from chip 

– Example: Google deep learning study (CPUGPU) 

• FPGA 

– General; requires hardware design language 

– Moderate performance and efficiency  

• Custom IC (Truenorth, Spinnaker) 

– Specific: ex. executes STDP 

– Highest performance and efficiency 

– Expensive, 40MB local memory  

– Example: IBM Truenorth 

• Moore law has provided enormous  

benefits to all of these technologies 



Next Generation of  

Neural Algorithm Computing 
• Problem: neural algorithm training requires significant memory and logic 

interaction 

• What is the most efficient way to combine memory, logic and interconnects? 

• SRAM: on chip cache memory is limited to ~40MB digital (Intel E7)  

– ns latency, max regardless of CPU, GPU or ASIC 

• Off chip communication to DRAM costs >100 pJ/op, ~10ns latency 

• Resistive memory on chip: can be stacked to >TB/cm2, >100 layers 

– On chip access, <pJ per op and <1ns latency possible 

– Terabit densities on single chip – on chip wiring is low energy! 

– Sub 1V switching – minimal CV2f loss (DRAM 2-5V) 

• Significant power savings using a ReRAM based HW accelerator 

– Example: Taha found 16x reduction in power, 6x improvement in perf per chip over 

SRAM 

 ReRAM Layers:

· Terabit cm
-2 

per layer

· Replaces DRAM & flash

· <1 pJ, <10 ns operation

Interconnect to Next IC

· Photonic or high speed 

electrical

High Performance Logic
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IC
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Backpropagation of Errors 

• Straw-man algorithm – others can be used 

• Initial linear network training did not have a 

method of training hidden layers 

• Backpropagation of errors gave a method to 

train hidden network layers 

How does backpropagation work? 

1. Forward calculation of output 

2. Calculate all weight deltas and compute 

error derivative (backprop errors) 

3. Combine this with learning rate to update 

weight 
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Mapping weight matrix to ReRAM 

• Single ReRAM based neuron 
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Backpropagation Circuit 
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System Level Architecture 

Neuromorphic core: 
• Stores and updates weights 
• Computes weighted sum of inputs 
• Computes error derivatives 
• Applies non-linear neuron function 

Inputs: 
• Previous layers’ neuron outputs 
• Following layers’ error derivatives 
• Control signals 
Outputs: 
• Neuron outputs to following layer 
• Error derivatives to prev. layer 

Core 
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Inter-Core Connectivity Options 

Must consider options for interconnecting 
multiple neural cores: 
 
Maximize Flexibility:  
• All neuron inputs/outputs go off chip, training 

signals come in 
• Least energy efficient, most complex wiring 
Maximize Energy Efficiency: 
• Connections hardwired, perhaps some 

flexibility through FPGA architecture 
• Least flexible design 
• Each core independently does learning based 

on local inputs and outputs 
Hybrid Approach Also Possible 
• Use local buses with some off-chip capability 
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Configuring Crossbars 

• The size of a single ReRAM crossbar 

will be limited by analog signal to noise 

ratio and interconnect line resistance 

and max current considerations 

• Weights in a network will most likely 

not correspond to the number of 

weights in one crossbar 

• Solution: multiple crossbars per core 

– Analog signal enhancement 

between separate cores 

• Maximize efficiency: 

– Share a single A/D converter 

between cores in different layers 

– Use digital communications for long 

distance communications 
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Oxide-Based Resistive Memory 

• “Hysteresis loop” is simple method to visualize operation 

– (real operation through positive and negative pulses) 

• Resistance Change Effect (polarities depend on device): 

– Positive voltage/electric field: low R – O-2 anions leave oxide 

– Negative voltage/electric field: high R – O-2 anions return 

• Common switching materials: TaOx, HfOx, TiO2, ZnO   
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Typical Device Fabrication 

Si Substrate
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1

2

3. Etch via holes in USG

4. Deposit W and TiN layers

5. CMP

7. Etch bits 

SiO2

Al Metal

USG

Si Substrate

3-5

SiO2

Al Metal

USG

0.35 – 0.5 µm bottom vias

W W

Si Substrate

SiO2

Al Metal

USG
W W

Si Substrate

SiO2

Al Metal

USG
W

TiN (20 nm)

TiN (20 nm)

6 Ta (15 nm)
TaOx (10 nm)

6. Deposit bit stack 
(layers enlarged for clarity)

7

Si Substrate

SiO2

Al Metal

USG
W

8-9

Si Substrate

SiO2

Al Metal

USG
W

10

Al (700 nm)

10. Deposit top Al

0.35 – 1.5 µm top vias

0.75 – 1.5 µm bits

8. Deposit top USG

9. Etch top via holes in USG

W W



ReRAM Requirements for a  

Neural Accelerator 

Different requirements than standard 

memory: 

• Linear dynamic response 

– Perhaps some flexibility with this 

• Low variability 

– Device to device, cycle to cycle 

– Need correct average behavior 

• Wide resistance range 

• Low read noise 

• Endurance: high 

• Retention: weeks  
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Weight Updates with ReRAM 

• Square pulse train of fixed amplitude and duration (typ. µs) 

• Most common method of characterizing  

• Do not want to erase many pulses with opposing pulse 
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Variability and Noise 

• Interdevice variability: device to device, can be >10x 

– Variations in film thickness, topography 

• Intradevice variability: cycle to cycle, can be >2x 

– Fundamental physical attributes 

• Random telegraph noise:  

– Affects read current, usually least significant 
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Closed Loop Cycling 

• Resistance “find” routine 

– 400 µs pulses 

– Vpulse=0.5VR-target (100 mV inc) 

• End 

– R>Rtarget (off) 

– R<Rtarget (on) 



Open/Closed Loop Cycling 

Open loop Vset=1V 

Closed loop 

Open loop Vreset = -2V  

Closed loop 

Closed  

loop 

Open 

loop  
Vreset = -2V  

Closed  

loop 

Open loop 
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Where does noise originate from? 

• Important question – not yet a great answer 

• Device to device: film thickness variations?  

• Cycle to cycle: Internal state variations? 



How much noise can be tolerated? 

• First step: Simulation Study 

– Mimic on-line learning with incremental open-loop 

resistance nudges 

– Assume adjustment of each W by DW is done 

imprecisely 

– Add white noise to each weight update: 

 

 

 

 

– Train on individual images or mini-batch or full epoch 

– Train for fixed epoch count, or to convergence 

– Adjust backprop step-size “a” if needed 

– Classify as usual with final weights 



Noise vs Accuracy (Fixed Iteration) 
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Summary and Future Work 

Summary 

• Sandia has launched a new project which includes 

significant effort in accelerating neural algorithms 

• ReRAM will allow TB of memory to be monolithically 

integrated circuit with high performance logic transistors 

– Saves expensive off-chip (DRAM) operations 

– Lower energy on-chip routing 

– Overcomes density limitations of digital SRAM 

Next Steps 

• Assess and model variability of ReRAM 

• Use this data to create an accurate system model in Xyce 

• Finalize system architecture  

• Perform power and performance estimates of ReRAM over 

SRAM accelerator 
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